原创

JVM介绍以及原理

JVM介绍:
JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟器,一栈,一个垃圾回收堆和一个存储方法域。JVM屏蔽了与具体操作系统(字节码),就可以在多种平台上不加修改的运行。JVM在执行字节码时,实际上最终还是把字节码解释成具体平台上的机器指令执行。
JDK/JRE/JVM三者的区别
JDK是程序开发者用来编译,调式java程序用的开发工具包。JDK的工具也是java程序,也需要JDE才能运行。为了保持JDK的独立性和完整性,在JDK的安装过程中,JRE也是安装的一部分,所以,在JDK的安装目录下有一个名为JRE的目录,用于存放JRE文件。
JRE 也就是java平台。所有的java程序都要在JRE下才能运行。普通用户只需要运行已开发好的java程序,安装JRE即可。
JVM 是JRE的一部分。它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的,JVM有自己完善的硬件构造,如处理器,堆栈,寄存器等,还具有相应的指令系统。java语言最终要的特点就是跨平台运行。使用JVM就是为了支持与操作系统无关,实现跨平台。
JVM原理
JVM是java的核心和基础,在java编译器和os平台之间的虚拟处理器。他是一种利用软件方法实现的抽象的计算机基于下层的操作系统和硬件平台,可以在上面执行java的字节码程序。java编译器只要面向JVM,生成JVM能理解的代码或字节码文件。java源文件经编译成字节码程序,通过JVM将每一条指令编译成不同平台机器码,通过特定平台运行。
JVM的体系结构
类装载器(ClassLoader)(用来装载.class文件)
执行引擎(执行字节码,或者执行本地方法)
运行时数据区(方法区、堆、java栈、PC寄存器、本地方法栈)
JVM运行时数据区
第一块:PC寄存器
PC寄存器是用于存储每个线程下一步将执行的JVM指令,如该方法为native的,则PC寄存器中不存储任何信息。
第二块:JVM栈
JVM栈是线程私有的,每个线程创建的同时都会创建JVM栈,JVM栈中存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolean、char、byte、short、int、long、float、double)、部分的返回结果以及Stack Frame,非基本类型的对象在JVM栈上仅存放一个指向堆上的地址。
第三块:堆(Heap)
它是JVM用来存储对象实例以及数组值的区域,可以认为Java中所有通过new创建的对象的内存都在此分配,Heap中的对象的内存需要等待GC进行回收。
(1) 堆是JVM中所有线程共享的,因此在其上进行对象内存的分配均需要进行加锁,这也导致了new对象的开销是比较大的
(2) Sun Hotspot JVM为了提升对象内存分配的效率,对于所创建的线程都会分配一块独立的空间TLAB(Thread Local Allocation Buffer),其大小由JVM根据运行的情况计算而得,在TLAB上分配对象时不需要加锁,因此JVM在给线程的对象分配内存时会尽量的在TLAB上分配,在这种情况下JVM中分配对象内存的性能和C基本是一样高效的,但如果对象过大的话则仍然是直接使用堆空间分配
(3) TLAB仅作用于新生代的Eden Space,因此在编写Java程序时,通常多个小的对象比大的对象分配起来更加高效。
(4) 所有新创建的Object 都将会存储在新生代Yong Generation中。如果Young Generation的数据在一次或多次GC后存活下来,那么将被转移到OldGeneration。新的Object总是创建在Eden Space。
第四块:方法区域(Method Area)
(1)在Sun JDK中这块区域对应的为PermanetGeneration,又称为持久代。
(2)方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,当开发人员在程序中通过Class对象中的getName、isInterface等方法来获取信息时,这些数据都来源于方法区域,同时方法区域也是全局共享的,在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。
第五块:运行时常量池(Runtime Constant Pool)
存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。
第六块:本地方法堆栈(Native Method Stacks)
JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。
对象“已死”的判定算法
由于程序计数器、Java虚拟机栈、本地方法栈都是线程独享,其占用的内存也是随线程生而生、随线程结束而回收。而Java堆和方法区则不同,线程共享,是GC的所关注的部分。
在堆中几乎存在着所有对象,GC之前需要考虑哪些对象还活着不能回收,哪些对象已经死去可以回收。
有两种算法可以判定对象是否存活:
1.)引用计数算法:给对象中添加一个引用计数器,每当一个地方应用了对象,计数器加1;当引用失效,计数器减1;当计数器为0表示该对象已死、可回收。但是它很难解决两个对象之间相互循环引用的情况。
2.)可达性分析算法:通过一系列称为“GC Roots”的对象作为起点,从这些节点开始向下搜索,搜索所走过的路径称为引用链,当一个对象到GC Roots没有任何引用链相连(即对象到GC Roots不可达),则证明此对象已死、可回收。Java中可以作为GC Roots的对象包括:虚拟机栈中引用的对象、本地方法栈中Native方法引用的对象、方法区静态属性引用的对象、方法区常量引用的对象。
在主流的商用程序语言(如我们的Java)的主流实现中,都是通过可达性分析算法来判定对象是否存活的。
JVM垃圾回收
GC (Garbage Collection)的基本原理:将内存中不再被使用的对象进行回收,GC中用于回收的方法称为收集器,由于GC需要消耗一些资源和时间,Java在对对象的生命周期特征进行分析后,按照新生代、旧生代的方式来对对象进行收集,以尽可能的缩短GC对应用造成的暂停
(1)对新生代的对象的收集称为minor GC;
(2)对旧生代的对象的收集称为Full GC;
(3)程序中主动调用System.gc()强制执行的GC为Full GC。不同的对象引用类型, GC会采用不同的方法进行回收,JVM对象的引用分为了四种类型
(1)强引用:默认情况下,对象采用的均为强引用(这个对象的实例没有其他对象引用,GC时才会被回收)
(2)软引用:软引用是Java中提供的一种比较适合于缓存场景的应用(只有在内存不够用的情况下才会被GC)
(3)弱引用:在GC时一定会被GC回收
(4)虚引用:由于虚引用只是用来得知对象是否被GC  

正文到此结束